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Investigation of the entrainment of gases induced by a surface wave propagating along the wall of a
microtube is conducted by using a relaxed model with slip velocity boundary conditions. Flow patterns tuned
by critical reflux valuesa0, Knudsen numbers, Reynolds numbers, and the wave number are demonstrated.
Results show that once the cross section of the microtube is narrowed down(slip velocity increasing) there are
earlier backward flows and the flow pattern is much more complicated. Our results should be useful for the
design of micro total analytical systems.

DOI: 10.1103/PhysRevE.70.061902 PACS number(s): 87.19.St, 87.68.1z, 89.75.Kd, 85.85.1j

I. INTRODUCTION

Integrated microfluidicsmfluidicd devices are being used
to automate the generation and analysis of chemical com-
pounds[1,2]. Chemical analyses onmfluidic devices can be
highly automated and reduce the consumption of reagents by
several orders of magnitude. Miniaturized analysis systems,
however, depend on the precise control of fluids through the
network. Some approaches, like pressure-driven flows(de-
livered by, say, micropumps[3,4]), electro-osmotic flows
(EOF’s), where the circuits use electrophoretic separations
[3,5,6], and most recently, surface-acoustic-wave-
(SAW-)driven flows[7] (e.g., Love-wave devices incorporat-
ing guiding layers of spun polymethylmethacrylate(PMMA)
on ST quartz) have been adopted by many researchers. The
last method is still in the developing stage and can be related
to the previously well-known peristaltic transport in bioflu-
idic applications[8] such as flexible and/or deformable mi-
croconduits or microtubes. The control methodology for
SAW-driven flows is similar to EOF considering the wall or
boundary tuning mechanism; however, the SAW-driven
flows escape from the rather large external electric field that
is necessary for EOF.

Inspired by nature and current technologies, for example,
respiratory mechanisms in insects, we can reconstruct a sys-
tem for scientific and physiological applications[9]. Most
insects respire through a system of tubes(called tracheae)
that connect to the air via spiracles that can be actively
opened or closed. These tiny tubes are gas-filled vessels(the
diameter can be as small as 1mm) and they function to ex-
change gas with tissues of the body. One of the possible
external mechanisms for respiration is muscle contraction(in
the abdomen) [9] which is similar to the peristaltic-wave-
driven method[8]: wavy motion along the boundary of tubes
induces a streaming flow or reflux along the tube(for a cer-
tain range of wave numbers and wave speeds).

We note that rarefied gases flowing in static rigid channels
with the dominant physical parameter being the Knudsen
number(Kn=, /d, where, is the mean free path of the gas
andd is the width of the channel) have been studied since the
late 1870s[10]. Recently researchers have started to investi-
gate slip flow (the regime characterized by 0.001
øKn,0.15) within static rigid plane microchannels or mi-

crotubes, which are common in microdomains of microelec-
tromechanical system(MEMS) applications[4,11–14], and
found certain interesting physical behavior. The nonzero slip
velocity normally comes from incomplete momentum trans-
fer along the gas-surface(collision and reflection) boundary
when the pressure inside the channel is rather low and also
because the characteristic length scale of the cross-sectional
geometry is in submicrometers. At present, although a large
variety of silicon-based microconduits[12] can be fabricated
in a highly controllable and reproducible manner, to achieve
a defect-free silicon surface during the fabrication of micro-
tubes[14] (say, the diameter being of the order of magnitude
of micrometers) is still a challenge.

We also know, however, that most of the sensors in biomi-
croelectromechanical systems(bio-MEMS) perform in a
wide dynamic range and with high sensitivity[11], which
implies that microtubes or nanotubes built in the microstruc-
ture of MEMS are easily subjected to environmentally dy-
namic and random noises[15]. That is to say, the flow rate of
gases in microtubes embedded in soft MEMS might be tuned
by these dynamic noises even though they might be minor
from the macroscopic point of view.

In this study, we shall illustrate possible time-averaged
effects due to the boundary(surface) coupling with the iner-
tia of rarefied gases in micro- and nanotubes which may be
directly related to rarefied gas flow inmfluidic devices. For
simplicity, we shall only consider slow(quasistatic) wave
motions which permit us to not take into account real dy-
namic phenomena[16]. Thus, the details of a possible close-
coupled dispersion relation between the(surface) wave num-
ber and wave speed will not be considered here and relevant
applications of them are beyond our present approach. We
obtain flow patterns tuned by the critical reflux(pressure-
gradient) values in some range of Reynolds numbers associ-
ated with a medium wave number of peristaltic waves propa-
gating along the wall of the microtube. To the best
knowledge of the author, considering the present micro- and
nanofabrication technologies, and measurement techniques,
the experimental side of our results is still unproven. That is
to say, the crucial issue is to generate a surface wave experi-
mentally in a precise way, but how to filter out the noise
wave within the micro- and nanodomains from the ambient
environment is yet unknown. It is also rather difficult to mea-
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sure or visualize the velocity profiles in a micro- or nan-
odomain, especially for dynamic profiles in a microtube with
the cross-section geometry being of the order of magnitude
of micrometers. On the other hand, as commented in[17], in
microfluidic devices using electro-osmotic flow control,
electro-osmosis has proven difficult to apply because the ef-
fect is generated by a complex interplay among surface com-
position, buffer characteristics, and external voltage fields.
Transporting minute amounts of material across a surface has
resulted in poor flow-control reproducibility. Thus, our ap-
proach and relevant results could be useful to researchers in
this field.

II. FORMULATIONS

We consider a circular cylindrical(elastic) microtube of
uniform thickness filled with a homogeneous rarefied gas.
The wall of the tube is not absolutely rigid; on it is imposed
axisymmetric traveling sinusoidal waves of moderate ampli-
tude a (z is the axial coordinate in the wave propagation
direction). The radial displacement from the mean position
of the wall sr =r0d is thus presumed to beh, where h
=a cosf2psz−ctd /lg, l is the wavelength, andc is the wave
speed. Axisymmetric motion is assumed withr measured in
the direction normal to the mean position of the wall(please
see Fig. 1). u,v are the velocity components in thez and r
directions, respectively.

It would be expedient to simplify these equations by in-
troducing dimensionless variables. We have a characteristic
velocity c and three characteristic lengthsa, l, and r0. The
following variables based onc and r0 could thus be intro-
duced:

r8 = r/r0, z8 = z/r0, u8 = u/c, v8 = v/c,

h8 = h/r0, c8 = c/scr0
2d, t8 = sctd/r0, p8 = p/src2d.

In the following, the primes for the dimensionless variables
will be dropped for convenience. The relevant governing
equations for an incompressible flow are

= ·u = 0, u ; su,vd,

]u/]t + u · = u = − = p + ¹2u/Re.

The amplitude ratioe, the wave numbera, and the Reynolds
number Re are defined bye=a/ r0, a=s2pr0d /l, Re

=scr0d /n. We shall seek a solution in the form of a series in
the parameter e :c=c0+ec1+e2c2+¯, ]p/]z=s]p/]zd0

+es]p/]zd1+e2s]p/]zd2+¯, with v=s]c /]zd / r, u
=−s]c /]rd / r.

The two-dimensional(r andz) momentum equations and
the equation of continuity could be in terms of the stream
function c if the pressurespd term is eliminated. The final
governing equation is
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where the subscripts indicate partial differentiation. The fluid
is subjected to boundary conditions imposed by the symmet-
ric motion of the wall and the nonzero slip velocity
[10,15,18]: u=−Kn du/dr, v=]h /]t at r =s1+hd. Kn=, / r0,
where, is the mean free path. The boundary conditions can
be expanded in powers ofh and thene:
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2

cos2 asz− td + cosasz− tduc1zru1 + uc2zu1G
+ ¯ = − ea sinasz− td − e2a cosasz− tdsinasz− td.

s3d

The equations above, together with the condition of symme-
try and a uniform pressure gradient in thez direction,
s]p/]zd0=const yield

c0 = K0fs1 + 2Kndr2 − r4/2g, K0 = sRe/8dfs]p/]zd0g,

s4d

and

c1 = fsrdeiasz−td + f * srde−iasz−td, s5d

where the asterisk denotes the complex conjugate. Similarly,
we have

c2 = Dsrd + Esrdei2asz−td + E * srde−i2asz−td s6d

and the associated boundary conditions. We consider only
the case of Kn@Osed from the above boundary conditions,
which means the mean free path of the rarefied gas is much
larger than the amplitude of the wall-surface wave.

To simplify the approach and obtain preliminary analyti-
cal solutions of the above complicated equations and bound-
ary conditions, we shall present the case in whichs]p/]zd0

vanishes orc0=0 (free pumping cases). This is directly

FIG. 1. Schematic longitudinal diagram of the deformable mo-
tion of the microtube’s wall inside one cross-section with respect to
the tube axis(the orientation is counted from, say, thex axis which
is normal to thez axis). The tube is axisymmetric.
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linked to flow control without an external pressure-driven
mechanism.

After lengthy algebraic manipulations, we obtain

f = A0rI 1sārd + B0rI 1sard, s7d

where A=A0/D, B=B0/D, D=fKnā2I1sād+āI0sādgI1sad
−fKna2I1sad+aI0sadgI1sād, A0=fKna2I1sad+aI0sadg /2, B0

=−fKnā2I1sād+āI0sādg /2, and In is the modified Bessel
function of the first kind of ordern.

To obtain a simple solution that relates to the mean flow
so long as only terms ofOse2d are concerned, we see that if
every term in thez-momentum equation is averaged over an
interval of time equal to the period of oscillation, we can
then obtain(from our solutions as given by the above equa-
tions) the mean pressure gradient

s]p/]zd = e2s]p/]zd2 + Ose3d = e2H 1

r Re
S− Drrr +

Drr

r
−

Dr

r2 D
+

ia

r2Fffrr
* − f * frr −

1

r
sffr

* − f * frdGJ
+ Ose3d. s8d

If fact, as it is similar to the derivation of no-slip cases[8],
we have

s]p/]zd = e2sa0/Red + Ose3d s9d

with a0 an integration constant. In practical applications we
must determinea0 from considerations of the conditions at
the ends of the microtube. Oncea0 is specified, our solution
for the mean axial velocity(averaged over time) of the flow
is

Usrd = e2H− R0 − a2 Re2FSs1 − KndGs1d −
Gsrd

r

+ KnGrs1dDG +
a0

4
s1 + 2Kn −r2dJ s10d

whereR0=−ffrrs1d+frr
* s1dg /2 as Kn=0, andGsrd is a com-

bination offsrd and its higher orderr derivatives.

III. RESULTS AND DISCUSSION

Numerical calculations confirm that the mean streamwise
velocity distribution(averaged over time) due to the peristal-
tic motion in the case of free pumping is dominated byR0 (or
Kn) and the parabolic distribution −a0s1−r2d. R0, which de-
fines the boundary value, has its origin in ther gradient of
the second-order streamwise velocity distribution, as can be
seen in the equations above.

Now let us define the critical reflux condition as one for
which the mean velocityUsrd equals zero at the centerline
r =0. With Eqs.(8)–(10), we have, for the second-order term,

a0 = Res]p/]zd2, s11d

which means the critical reflux condition is reached whena0
has this valuesa0cr

d. Pumping against a positive pressure
gradient greater than the critical value would result in a back-

ward flow (reflux) in the central region of the stream. This
critical value depends ona, Re, and Kn. There will be no
reflux if the pressure gradient is smaller than thisa0.

The physical significance ofa0 is demonstrated in Figs. 2
and 3. The effect of slip velocities(tuned by Kn) with fixed
wave numbersa=0.8d on Usrd is also demonstrated in these
figures for Re=50 with differenta0 [ranges −25, −12, −5, 2,
7.3422sa0cr

d, 15 for the no-slip case, Fig. 2, and ranges −25,
−12, −5, 2, 5.2303sa0cr

d, 15 for the slip case, Fig. 3]. All the
quantities shown in the figures here are dimensionless. We
observe that once there is a slip velocitysKnÞ0d along the
wall, the flow decoupling from the motion of the peristaltic
waves propagating along the wall is larger. This implies that

FIG. 2. Dependence of the mean velocity profileUsrd on a0 for
the wave numbera=0.8, the Reynolds number Re=50, Kn=0.a0

increases from −25 to 15.a0cr
=7.3422 Kn is the Knudsen number

(see the text for the definition). a0 is related to the second-order
pressure gradient. All quantities shown here and in subsequent fig-
ures are dimensionless.

FIG. 3. Dependence of the mean velocity profileUsrd on a0 for
the wave numbera=0.8, the Reynolds number Re=50, Kn=0.1.a0

increases from −25 to 15.a0cr
=5.2303. Asa0=a0cr

, Usr =0d=0, i.e.,
a backward flow starts to form.
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flow control in slip flows driven by a peristaltic wave is
much more difficult than that in the no-slip case. Once the
Reynolds number increases, the nonlinear coupling effect
due to the peristaltic wave and the fluid inertia is enhanced.
To understand the meaning of flow control, as evidenced in
Eq. (10) for U, we can either adjust the values of the small
amplitude surface wavessed, the wave numbersad, the wave
speed(Re), on the physical properties of the fluid and/or the
tube (Kn) or tune a0 to obtain the flow pattern. We must
remind the readers that once the physical parameters are pre-
scribed,a0cr

is then fixed and unique, and differenta0 will
result in differentUsrd, e.g., either a forward or a reverse
flux, as shown here.

In fact, the “control” here is open-loop control, for any
stable state(consideringc0, since the Reynolds numbers we
adopted are rather small here compared to the critical Rey-
nolds number in a similar linear stability analysis for a tube
in a no-slip case[19]) of small amplitude(surface) waves,
the frequencyv=ac is not fixed but can be arbitrarily tuned.
This implies thata and c are independent variables here.
Researchers who use the peristaltic-wave approaches nor-
mally treated the wave numbera and the wave speedc in-
dependently[8]. Insects, however, as noted in Ref.[9], might
alter these properties physiologically by either suddenly de-
forming or narrowing down the microtube’s cross section or
strengthening/compressing the microtubes(geometrical
ways). The latter could change the thickness of the micro-
tubes. As for adjustingc, it could be tuned via the elastic
constant of the microtube and its environment or interface.
This is related to the softening or hardening of the material
of the microtube or its interface/environment. Here, we must
remind the readers that the microscopic structure for the ma-
terial is, in fact, porous. The macroscopic elasticity and/or
viscosity could thus be altered through a microscopic change
of the porosity or thermal effects around the porous struc-
tures which are accessible in insects.

To illustrate the detailed three-dimensional velocity field
for different a0 (−22 and −28 for correspondinga0cr
=7.3422) under the same Knudsen numbersKn=0d, Rey-

nolds numbersRe=50d, and peristaltic wave numbersa
=0.8d, we plotUsrd versusr in Figs. 4 and 5. It is clear that
onceua0u becomes small, it is not possible to sustain a com-
pletely forward-moving flow relative to the peristaltic(or
surface acoustic) wave (propagating along the tube wall).

In fact, the critical reflux values decrease for the slip cases
for all ranges ofsRe,ad. The direct interpretation about this
behavior is that once there are slip velocities along the wall,
the backward-moving gas flows are much more easily trig-
gered than no-slip ones inside micro- and nanotubes so that
the pumping power should be increased at the beginning for
stable flow control. Meanwhile, as there are early backward-
moving flows due to slip-flow effects, the gas flows might
become more unstable than in the previous no-slip cases.
Thus a detailed study of gases flowing in deformable micro-
or nanotubes should be performed as early as possible for the
understanding of respiratory mechanisms[9], flow control in
mfluidic devices, and the design of micro total analysis sys-
tems [2]. We shall investigate more complicated problems
[3,16,20–22] and take into account the viscoelasticity[23]
(like that of biological vessels but with slip velocity bound-
ary conditions) in the future. In the latter case, for the vis-
coelastic medium, the dispersion relation for one-
dimensional(1D) surface(transverse) waves proportional to
expsiaz− ivtd can be given asrv2=Ksvda2, wherer is the
mass density of the medium andKsvd is the frequency-
dependent transverse elastic modulus which can also be
given in a complex form[24] and is characterized by a re-
laxation time t (for vt@1, K recovers the elastic limit).
Based on this, the entire formulations will be essentially non-
trivial and complicated. Furthermore, the slip velocity
boundary conditions for a viscoelastic medium are obscure at
present.
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FIG. 4. (Color online) Three-dimensional view of the mean ve-
locity profile Usrd for Re=50,a=0.8, Kn=0,a0=−22.

FIG. 5. (Color online) Three-dimensional view of the mean ve-
locity profile Usrd for Re=50,a=0.8, Kn=0,a0=−28.
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